

Particle Control for Low-Energy Boron Implantation

Phillip Geissbühler (Axcelis Technologies)

SK hynix co-authors: HunKyu Cha, SangHyun Na

Axcelis co-authors: David Burtner, Charlie Free, Kevin Wenzel, Luke Kim, DaeYoon Kim, BuMin Son

May 6, 2025

#SEMI ASMC

Outline

- Particles when running dedicated Low-Energy Boron (LEB) implants
- Graphite liners in the near-wafer environment of Axcelis' Purion High Current Implanter
- Boron films on graphite liners
- Metrology used to study the particles and films
- Sputtering of films
- Serrated graphite liners
 - Sputtering model
 - Optimizing serration angle to minimize film growth
- Field data

AS C SEMICONDUCTOR MANUFACTURING CONFERENCE

Particles when running dedicated Low-Energy Boron (LEB) implants

- <u>Dedicated</u> LEB implants are a special use-case:
 - Generate large particles in a short period of time (2 to 5 days) after Preventive Maintenance (PM)
 - Particles primarily contain boron
 - Have a distinctive shape flakes from delaminating films

Graphite Liners in the Near-Wafer Environment

 Axcelis Purion High Dose implanter uses graphite liners (shown in yellow) to shield areas of the process chamber from beam strike.

- This includes a beam tunnel and liners surrounding dosimetry components in the near-wafer environment.
- Surfaces exposed to normal and glancing-angle beam strike need to be treated differently due to differences in their sputtering yields

Boron Films on Beam Tunnel and Dose Faraday Aperture Graphite

Dose Faraday Aperture

Boron Films on Dose Faraday Aperture Graphite – SEM

- SEM cross-section of a Purion HC dose Faraday aperture after implanting dedicated Low-Energy Boron (LEB) for 10 days.
- The film is 10 to 20µm thick and almost pure boron (not a boron-carbide compound)

Metrology of Films on Faraday Graphite Liners – TEM, EELS

Species and relative concentrations of films normal to the beam match those of large particles on the wafer

	EELS Map		Species
O K Series	Si K Series	As K Series	Si, O, As
B K Series	Ar K Series		B, As, Ar
O K Series	Si K Series	As K Series	Si, O, As
B K Series	Ar K Series	As K Series	B, As, Ar

Sputtering of Films

- Sputtering depends on incoming atomic species, target material, energy, and incident angle
- Sputter yield S = number of atoms removed from surface per incident ion
 - An incoming beam with S > 1 can remove more material than it adds
- Sputter yield Monte Carlo simulations conducted using SRIM software
 - B+ 3keV on boron, sputter yield < 1 @ normal incidence (0°)
 - P+ 3keV on phosphorus, S > 1 for all angles

Incident Beam

Sputtering can keep surfaces clean by keeping films from growing

- Some sputtered material will be completely removed, but some will be redeposited onto the other side of the structure
- Steep features sputter more effectively, but steep walls mean more redeposition
- The sputter plume can be modelled in a few different ways
 - 1. Equally distributed through a range of angles
 - 2. A cosine function (traditional)
 - 3. More complicated differential angular yield from the literature

Beam

Average and Maximum Deposition vs. Serration Angle

- Modelling the sputter plume to be a cosine distribution predicts average deposition is minimized @ $\theta = 65^{\circ}$
- However, the model predicts that some material will still deposit at the bottom of the serration valleys.
- The maximum deposition decreases with higher serration angle
 - This suggests testing parts with serrations > 65°
- We tested parts with $\theta = 60^{\circ}$ and 75° serrations to increase etching of boron films while limiting the etching of graphite

High Angle Serrated Graphite Liners

- Components were tested with both high angle (θ =60°) and higher angle (θ =75°) serrations:
 - Beam Tunnel E-Slit Aperture
 - Dose Faraday Apertures
 - Beam Tunnel Exit Aperture

Particle Field Data with 60° & 75° Angle Serration Graphite

SEMICONDUCTOR MANUFACTURING CONFERENCE

- Box plots of particles measured during regular intervals between 17 and 21 days. Graphite was replaced after each PM.
- The first 5 sets had the 60° (HA60) serration graphite. Then the 60° graphite was replaced with 75° (HA75) graphite. •
- Both small (> 21nm) and large (> 150nm) particles improved and remained 100% within compliance, so the 75° graphite PM period was extended to 36 days. •

#SEMI ASMC

Field Results of both 60° and 75° Angle Serration Graphite

- High Angle Serration (60°) graphite had significant deposition after ~20 days
- The Higher Angle Serration (75°) graphite remained clean after ~80 days

Summary

- When implanting dedicated low-energy boron, boron films develop on surfaces that see direct beam-strike
- High angle serrations allow the beam to sputter away films and keep surfaces clean
- Slowing the rate of film buildup reduces delamination
 - Reduces particles which improves yield
 - Extends the time between preventative maintenance which increases uptime —
 - Reduces cost of ownership

